Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
J Hazard Mater ; 471: 134366, 2024 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-38678708

RESUMEN

The photoexcited dissolved organic matter (DOM) could produce reactive intermediates, affecting chemical oxidant transformation in UV based advanced oxidation processes (AOPs). This study confirmed the critical role of triplet state DOM (3DOM*), generated from DOM photoexcitation, in the transformation of monochloramine (NH2Cl), a commonly used chemical oxidant and disinfectant in water treatment. NH2Cl (42.25 µM, as Cl2) was decayed by 17.4-73.4 % within 60 min, primarily due to 3DOM* , in DOM (2-30 mgC L-1) solutions irradiated by 365 nm, where NH2Cl has no absorption. The second-order quenching rate constants of triplet state model photosensitizers by NH2Cl were determined to be 0.95(± 0.04)-4.49(± 0.04)× 108 M-1 s-1 by using laser flash photolysis. As a reductant, 3DOM* reacted with NH2Cl through one-transfer mechanism, leading to amino radical (NH2•) generation, which then transferred to ammonia (NH4+, pKa 9.25) through H-abstraction by the phenolic moieties in DOM. Additionally, the intermediate product of 3DOM* oxidized by NH2Cl or those triplet state quinones can hydrolyze to form phenolic moieties, elevating NH4+ yield to higher than 99% upon 365 nm irradiation. These findings suggest that the widespread DOM can be applied to convert NH2Cl via 3DOM* with minimal toxic risks.

2.
Environ Sci Technol ; 58(10): 4751-4760, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38324714

RESUMEN

Excited triplet states of wastewater effluent organic matter (3EfOM*) are known as important photo-oxidants in the degradation of extracellular antibiotic resistance genes (eArGs) in sunlit waters. In this work, we further found that 3EfOM* showed highly selective reactivity toward 2'-deoxyguanosine (dG) sites within eArGs in irradiated EfOM solutions at pH 7.0, while it showed no photosensitizing capacity toward 2'-deoxyadenosine, 2'-deoxythymidine, and 2'-deoxycytidine (the basic structures of eArGs). The 3EfOM* contributed to the photooxidation of dG primarily via one-electron transfer mechanism, with second-order reaction rate constants of (1.58-1.74) × 108 M-1 s-1, forming the oxidation intermediates of dG (dG(-H)•). The formed dG(-H)• could play a significant role in hole hopping and damage throughout eArGs. Using the four deoxynucleosides as probes, the upper limit for the reduction potential of 3EfOM* is estimated to be between 1.47 and 1.94 VNHE. Compared to EfOM, the role of the triplet state of terrestrially natural organic matter (3NOM*) in dG photooxidation was minor (∼15%) mainly due to the rapid reverse reactions of dG(-H)• by the antioxidant moieties of NOM. This study advances our understanding of the difference in the photosensitizing capacity and electron donating capacity between NOM and EfOM and the photodegradation mechanism of eArGs induced by 3EfOM*.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Fotólisis , Antibacterianos , Oxidantes , Farmacorresistencia Microbiana
3.
Environ Sci Technol ; 57(50): 21178-21189, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-38064756

RESUMEN

Sunlight plays a crucial role in the transformation of dissolved organic matter (DOM) and the associated carbon cycle in aquatic environments. This study demonstrates that the presence of nanomolar concentrations of copper (Cu) significantly decreases the rate of photobleaching and the rate of loss of electron-donating moieties of three selected types of DOM (including both terrestrial and microbially derived DOM) under simulated sunlight irradiation. Employing Fourier transform ion cyclotron resonance mass spectrometry, we further confirm that Cu selectively inhibits the photooxidation of lignin- and tannin-like phenolic moieties present within the DOM, in agreement with the reported inhibitory impact of Cu on the photooxidation of phenolic compounds. On the basis of the inhibitory impact of Cu on the DOM photobleaching rate, we calculate the contribution of phenolic moieties to DOM photobleaching to be at least 29-55% in the wavelength range of 220-460 nm. The inhibition of loss of electrons from DOM during irradiation in the presence of Cu is also explained quantitatively by developing a mathematical model describing hydrogen peroxide (a proxy measure of loss of electrons from DOM) formation on DOM irradiation in the absence and presence of Cu. Overall, this study advances our understanding of DOM transformation in natural sunlit waters.


Asunto(s)
Cobre , Materia Orgánica Disuelta , Luz Solar , Fenoles , Espectrometría de Masas
4.
Environ Sci Technol ; 57(29): 10849-10859, 2023 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-37428984

RESUMEN

Photolysis of free chlorine is an increasingly recognized approach for effectively inactivating microorganisms and eliminating trace organic contaminants. However, the impact of dissolved organic matter (DOM), which is ubiquitous in engineered water systems, on free chlorine photolysis is not yet well understood. In this study, triplet state DOM (3DOM*) was found to cause the decay of free chlorine for the first time. By using laser flash photolysis, the scavenging rate constants of triplet state model photosensitizers by free chlorine at pH 7.0 were determined to be in the range of (0.26-3.33) × 109 M-1 s-1. 3DOM*, acting as a reductant, reacted with free chlorine at an estimated reaction rate constant of 1.22(±0.22) × 109 M-1 s-1 at pH 7.0. This study revealed an overlooked pathway of free chlorine decay during UV irradiation in the presence of DOM. Besides the DOM's light screening ability and scavenging of radicals or free chlorine, 3DOM* played an important role in the decay of free chlorine. This reaction pathway accounted for a significant proportion of the decay of free chlorine, ranging from 23 to 45%, even when DOM concentrations were below 3 mgC L-1 and a free chlorine dose of 70 µM was present during UV irradiation at 254 nm. The generation of HO• and Cl• from the oxidation of 3DOM* by free chlorine was confirmed by electron paramagnetic resonance and quantified by chemical probes. By inputting the newly observed pathway in the kinetics model, the decay of free chlorine in UV254-irradiated DOM solution can be well predicted.


Asunto(s)
Cloro , Contaminantes Químicos del Agua , Materia Orgánica Disuelta , Rayos Ultravioleta , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis , Fotólisis
5.
J Hazard Mater ; 458: 131812, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331060

RESUMEN

Dissolved organic matter (DOM) driven-photochemical processes play an important role in the redox cycling of trace metals and attenuation of organic contaminants in estuarine and coastal ecosystems. In this study, we evaluate the effect of Cu on 4-carboxybenzophenone (CBBP) and Suwannee River natural organic matter (SRNOM)-photosensitized degradation of seven target contaminants (TCs) including phenols and amines under pH conditions and salt concentrations typical of those encountered in estuarine and coastal waters. Our results show that trace amounts of Cu(II) (25 -500 nM) induce strong inhibition of the photosensitized degradation of all TCs in solutions containing CBBP. The influence of TCs on the photo-formation of Cu(I) and the decrease in the lifetime of transformation intermediates of contaminants (TC•+/ TC•(-H)) in the presence of Cu(I) indicated that the inhibition effect of Cu was mainly due to the reduction of TC•+/ TC•(-H) by the photo-produced Cu(I). The inhibitory effect of Cu on the photodegradation of TCs decreased with the increase in Cl- concentration since less reactive Cu(I)-Cl complexes dominate at high Cl- concentrations. The impact of Cu on the SRNOM-sensitized degradation of TCs is less pronounced compared to that observed in CBBP solution since the redox active moieties present in SRNOM competes with Cu(I) to reduce TC•+/ TC•(-H). A detailed mathematical model is developed to describe the photodegradation of contaminants and Cu redox transformations in irradiated SRNOM and CBBP solutions.

6.
Environ Sci Technol ; 57(18): 7230-7239, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37114949

RESUMEN

Wastewater effluent is a major source of extracellular antibiotic resistance genes (eArGs) in the aquatic environment, a threat to human health and biosecurity. However, little is known about the extent to which organic matter in the wastewater effluent (EfOM) might contribute to photosensitized oxidation of eArGs. Triplet states of EfOM were found to dominate the degradation of eArGs (accounting for up to 85%). Photo-oxidation proceeded mainly via proton-coupled electron transfer reactions. They broke plasmid strands and damaged bases. O2•- was also involved, and it coupled with the reactions' intermediate radicals of eArGs. The second-order reaction rates of blaTEM-1 and tet-A segments (209-216 bps) with the triplet state of 4-carboxybenzophenone were calculated to be (2.61-2.75) × 108 M-1 s-1. Besides as photosensitizers, the antioxidant moieties in EfOM also acted as quenchers to revert intermediate radicals back to their original forms, reducing the rate of photodegradation. However, the terrestrial origin natural organic matter was unable to photosensitize because it formed less triplets, especially high-energy triplets, so its inhibitory effects predominated. This study advances our understanding of the role of EfOM in the photo-oxidation of eArGs and the difference between EfOM and terrestrial-origin natural organic matter.


Asunto(s)
Aguas Residuales , Contaminantes Químicos del Agua , Humanos , Antibacterianos/farmacología , Oxidación-Reducción , Fotoquímica , Farmacorresistencia Microbiana/genética
7.
Water Res ; 225: 119120, 2022 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-36126426

RESUMEN

The triplet states of dissolved organic matter (3DOM*) have been well known to oxidize various organic contaminants, but evidence of their reducing properties are largely scarce. In this work, chlorine dioxide (ClO2) as a single-electron oxidant was used as a probe to evaluate the reduction property of 3DOM*. The reduction of ClO2 to chlorite was observed in the solutions of model photosensitizers (i.e., 4-carboxybenzophenone, benzophenone, acetophenone, 3-methoxyacetophenone, naphthalene, and xanthone) during UV irradiation with the presence of ClO2, though they are resistant to ClO2 oxidation in the dark. The reducing property of the triplet states of photosensitizers was verified and their second-order reaction rate constants with ClO2 were determined to be in the range of 1.45(± 0.03)× 109 - 2.18(± 0.06) × 109 M-1 s-1 at pH 7.0. The quenching tests excluded the role of other reactive species (e.g., HO•, O(3P), Cl•, ClO• and HOCl/OCl-, O2•- and eaq-) in ClO2 reduction to chlorite when using model photosensitizers and DOM isolates. Chlorite formation was 48.1-90.4% and 4812.8-7721.8% higher during UV irradiation with the presence of ClO2 and DOM than those without UV irradiation or without DOM present, respectively. The enhancement was attributed to the enhanced electron donating capacity (chlorite precursors) of DOM upon UV irradiation and also to 3DOM* acting as an electron donor reducing ClO2 to chlorite. This study highlighted the important role of 3DOM* as a reductant.


Asunto(s)
Compuestos de Cloro , Purificación del Agua , Xantonas , Fármacos Fotosensibilizantes , Sustancias Reductoras , Compuestos de Cloro/química , Óxidos/química , Oxidación-Reducción , Oxidantes , Benzofenonas , Naftalenos , Acetofenonas , Cloro/química
8.
Water Res ; 223: 118967, 2022 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-35973248

RESUMEN

Dissolved organic matter (DOM), ubiquitous in natural waters, is known to inhibit the degradation of micropollutants in the advanced oxidation processes such as the UV/peroxydisulfate process. However, the quantitative understanding of the inhibitory pathways is missing. In this study, guanosine, aniline and catechol belonging to amines, purines and phenols were first investigated due to their resistance to UV irradiation at 254 nm and similar reactivity with SO4•- and HO•, respectively. The presence of 0.5 mgC L-1 Suwannee River NOM (SRNOM) inhibited their degradation rates by 72.9%, 54.5%, and 32.4%, respectively, despite their similar degradation rates in the absence of SRNOM. The results highlight the importance of reverse reduction of oxidation intermediates to the parent compound by antioxidant moieties in SRNOM besides the inner filtering and radical scavenging effects. The three inhibitory pathways were quantified for 34 common micropollutants. In the presence of 0.5 mgC L-1 SRNOM, inner filtering effect was found to contribute less than 2.8% of the inhibitory percentages (IP). Radical scavenging effects contribute between 10.7% and 38.9% and compounds having lower reactivity with SO4•- (< 4.0 × 109 M-1 s-1) tended to be inhibited more strongly. The IP of reverse reduction effects of SRNOM varied significantly from none up to 70.8%. It was linearly related with a micropollutant's reduction potential. Purines and amines generally exhibited more pronounced reverse reduction inhibition than phenols. The results of this study provide guidance on improving the elimination efficiency of micropollutants.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Compuestos de Anilina , Antioxidantes , Catecoles , Materia Orgánica Disuelta , Guanosina , Cinética , Oxidación-Reducción , Fenoles , Purinas , Rayos Ultravioleta , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos
9.
Environ Sci Technol ; 56(16): 11111-11131, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35797184

RESUMEN

Advanced oxidation processes (AOPs) can degrade a wide range of trace organic contaminants (TrOCs) to improve the quality of potable water or discharged wastewater effluents. Their effectiveness is impacted, however, by the dissolved organic matter (DOM) that is ubiquitous in all water sources. During the application of an AOP, DOM can scavenge radicals and/or block light penetration, therefore impacting their effectiveness toward contaminant transformation. The multiple ways in which different types or sources of DOM can impact oxidative water purification processes are critically reviewed. DOM can inhibit the degradation of TrOCs, but it can also enhance the formation and reactivity of useful radicals for contaminants elimination and alter the transformation pathways of contaminants. An in-depth analysis highlights the inhibitory effect of DOM on the degradation efficiency of TrOCs based on DOM's structure and optical properties and its reactivity toward oxidants as well as the synergistic contribution of DOM to the transformation of TrOCs from the analysis of DOM's redox properties and DOM's transient intermediates. AOPs can alter DOM structure properties as well as and influence types, mechanisms, and extent of oxidation byproducts formation. Research needs are proposed to advance practical understanding of how DOM can be exploited to improve oxidative water purification.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Materia Orgánica Disuelta , Oxidación-Reducción , Aguas Residuales/química , Contaminantes Químicos del Agua/química
10.
Environ Sci Technol ; 56(1): 546-555, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34747613

RESUMEN

Dissolved organic matter (DOM) has been known to inhibit the degradation of trace organic contaminants (TrOCs) in advanced oxidation processes but quantitative understanding is lacking. Adenine (ADN) was selected as a model TrOC due to the wide occurrence of purine groups in TrOCs and the well-documented transient spectra of its intermediate radicals. ADN degradation in the presence of DOM during UV/peroxydisulfate treatment was quantified using steady-state photochemical experiments, time-resolved spectroscopy, and kinetic modeling. The inhibitory effects of DOM were found to include competing for photons, scavenging SO4•- and HO•, and also converting intermediate ADN radicals (ADN(-H)•) back into ADN. Half of the ADN(-H)• were reduced back to ADN in the presence of about 0.2 mgC L-1 of DOM. The quenching rate constants of ADN(-H)• by the 10 tested DOM isolates were in the range of (0.39-1.18) × 107 MC-1 s-1. They showed a positive linear relationship with the total antioxidant capacity of DOM. The laser flash photolysis results of the low-molecular-weight analogues of redox-active moieties further supported the dominant role of antioxidant moieties in DOM in the quenching of ADN(-H)•. The diverse roles of DOM should be considered in predicting the abatement of TrOCs in advanced oxidation processes.


Asunto(s)
Antioxidantes , Contaminantes Químicos del Agua , Materia Orgánica Disuelta , Oxidación-Reducción , Fotólisis , Purinas , Contaminantes Químicos del Agua/química
11.
Environ Sci Technol ; 55(21): 14844-14853, 2021 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-34674525

RESUMEN

The presence of dissolved organic matter (DOM) is known to inhibit the degradation of trace organic contaminants (TrOCs) in SO4•--based advanced oxidation processes (AOPs) due to filtering of the photochemically active light and radical scavenging effects. This study revealed an unexpected contribution for DOM in the degradation of nitroimidazoles (NZs) in the UV/persulfate AOP. The apparent second-order rate constants of NZs with SO4•- increased by 2.05 to 4.77 times in the presence of different DOMs. The increments were linearly related to the total electron capacity of DOM. Quinone and polyphenol moieties were found to play a dominant role. The reactive species generated from SO4•-'s oxidation of DOM, including semiquinone radical (SQ•-) and superoxide (O2•-), were found to react with NZs via Michael addition and O2•- addition. The second-order rate constants of tinidazole with SQ•- is determined to be (5.69 ± 0.59) × 106 M-1 s-1 by laser flash photolysis. Reactive species potentially generated from DOM may be considered in designing processes for the abatement of different types of TrOCs.


Asunto(s)
Nitroimidazoles , Contaminantes Químicos del Agua , Oxidación-Reducción , Contaminantes Químicos del Agua/análisis
12.
Water Res ; 185: 116136, 2020 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-32818738

RESUMEN

Conventional coagulation process is not effective to eliminate trace organic compounds (TrOCs). This study proposed a novel peroxomonosulfate (PMS) amended iron coagulation process and found its effectiveness in eliminating TrOCs in synthetic and natural waters. In synthetic waters containing hydroquinone (HQ) or benzoquinone (BQ), Fe(III)/PMS effectively degraded carbamazepine (CBZ), a representative of resistant TrOCs. The step of reduction of Fe(III) to form Fe(II) governed the degradation rate of CBZ as PMS activation by Fe(II) was the dominant reaction to generate SO4•-, which was the major reactive oxidant in the system. Meanwhile, HQ was quickly transformed to BQ in the Fe(III)/PMS system and BQ acted as an electron shuttle to induce Fe(III)/Fe(II) redox cycle and accelerate PMS activation. Natural organic matter (NOM) bearing phenolic and quinone moieties played similar roles as HQ and BQ and fast CBZ degradation was also observed. Finally, two surface waters spiked CBZ were subjected to bench-scale experimentation to simulate coagulation/flocculation/sedimentation processes in water treatment plants. Compared to the conventional iron coagulation process, the PMS-amended iron coagulation process increased the removal percentage of CBZ by 50%-80%. Overall, this study demonstrates that PMS enhanced iron coagulation is a promising process for the abatement of TrOCs in water treatment.


Asunto(s)
Contaminantes Ambientales , Contaminantes Químicos del Agua , Purificación del Agua , Hierro , Oxidación-Reducción , Peróxidos
13.
Environ Sci Technol ; 54(16): 9980-9989, 2020 08 18.
Artículo en Inglés | MEDLINE | ID: mdl-32687340

RESUMEN

Excited triplet states of natural organic matter (3NOM*) are important reactive intermediates in phototransformation of organic contaminants in sunlit waters. The main goal of this study was to explore the influence of Cu on triplet-sensitized transformation rates of 20 selected phenolic and amine contaminants. Fourteen of the compounds examined exhibited a marked decrease in their 4-carboxybenzophenone (CBBP)-mediated phototransformation rate in the presence of trace amounts of Cu(II) (25-500 nM). Both mathematical modeling of these rate data and transient absorption spectroscopy measurements support the hypothesis that the decrease in the rate and extent of phototransformation of organic contaminants is due to the reduction of radical intermediates of the contaminants by photochemically formed Cu(I). The Cu-induced inhibition of oxidation of organic contaminants photosensitized by Suwannee River NOM (SRNOM) could also take place in the presence of nanomolar concentrations of Cu. The inhibitory effect of Cu on the oxidation rates of amine contaminants in SRNOM solutions was found to be significantly weaker compared to that in CBBP solutions, but little difference was observed on depletion of phenols. This behavior was attributed to the intrinsic inhibitory effect of the antioxidant moieties present in NOM on phototransformation of amine compounds, partially neutralizing the potential for further Cu inhibition.


Asunto(s)
Cobre , Contaminantes Químicos del Agua , Aminas , Fenoles , Ríos , Contaminantes Químicos del Agua/análisis
14.
Environ Sci Ecotechnol ; 3: 100051, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36159600

RESUMEN

This study revealed the dual roles of Cu(II) on the ß-lactam antibiotics degradation in Suwannee River fulvic acid (SRFA) solution during day and night cycle. Amoxicillin (AMX) and ampicillin (AMP) were selected as the representative ß-lactam antibiotics. Cu(II) played a key role in the dark degradation of AMX and AMP via catalytic hydrolysis and oxidation. However, Cu(II) mainly exhibited an inhibitory effect on SRFA-involved photochemical degradation of AMX and AMP. In the presence of 500 nM of Cu(II), the degradation rate of AMX and AMP in the light condition were around 5 times higher than that in the dark condition, suggesting the photodegradation of ß-lactam antibiotics was much more pronounced than catalyzed hydrolysis and oxidation. The triplet excited state of SRFA (3SRFA∗) primarily contributed to AMX and AMP photodegradation. Hydroxyl radicals (•OH) and singlet oxygen (1O2) exhibited limit impacts. The redox cycle of Cu(II)/Cu(I) restricted the electron transfer pathway of 3SRFA∗ with AMX and AMP. During the day and night cycles for 48 h, Cu(II) served as a stronger inhibitor rather than a promotor. These findings highlight the interactions between Cu(II) and SRFA are distinct under day and night conditions, which could further affect the fate of ß-lactam antibiotics in natural environments.

15.
Environ Sci Technol ; 54(2): 1186-1195, 2020 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-31865710

RESUMEN

Purines are the most widely occurring heterocyclic-N compounds. The degradation behaviors of purine derivatives, theophylline (TPL) and adenine (ADN) as representatives, in both single-component and mixture systems during UV/peroxydisulfate (PDS) treatment were explored. In the mixture system when the concentrations of SO4•- and HO• were reduced by more than half in comparison to a single-component system, the observed first-order rate constant of TPL was reduced by 11%, whereas ADN degradation was almost completely inhibited. An ADN "revert" pathway, that is, back transformation of ADN(-H)• to ADN by TPL via single electron-transfer reactions, was found. The second-order rate constant of ADN(-H)• with TPL was determined to be (1.94 ± 0.21) × 108 M-1 s-1. A kinetic model was developed, which successfully quantifies the contribution of each reaction pathway at various target compound concentrations. In the copresence of 0.1 µM TPL, 58% ADN (3.0 µM) was reduced back to ADN at the PDS dose of 290 µM. The ADN revert pathway's effectiveness is governed by the relative reduction potentials of the reactants. Purines and phenols with lower reduction potentials are able to react via the ADN revert pathway. These findings improve the understanding of the removal of mixture pollutants from real water media in advanced oxidation processes.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Peróxido de Hidrógeno , Cinética , Oxidación-Reducción , Purinas , Sulfatos , Rayos Ultravioleta
16.
Sci Total Environ ; 682: 629-638, 2019 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-31129545

RESUMEN

The degradation of pharmaceuticals and personal care products (PPCPs) by using solar photolysis in the presence of free available chlorine (FAC) was investigated in simulated drinking water. The combination of free available chlorine and sunlight irradiation dramatically accelerated the degradation of all the contaminants tested through the generation of hydroxyl radicals, reactive chlorine species (RCS) and ozone. Contaminants containing electron-donating moieties degraded quickly and were preferentially degraded by RCS and/or HO oxidation. Primidone, ibuprofen and atrazine, which contain electron-withdrawing moieties, were mainly degraded by HO. Trace amounts of O3 contributed greatly to carbamazepine's degradation. Degradation of PPCPs was accelerated in oxygenated solutions. Increasing chlorine concentrations barely enhanced removal of PPCPs bearing electron-withdrawing moieties. Higher pH generally decreased the degradation rate constants along with reduced levels of HO and Cl, but diclofenac, gemfibrozil, caffeine and carbamazepine had peak degradation rate constants at pH 7-8. The cytotoxicity using Chinese hamster ovary (CHO) cell did not show significant enhancement in solar/FAC treated water. Combining chlorination with sunlight may provide a simple and energy-efficient approach for improving the removal of organic contaminants during water treatment.

17.
Sci Total Environ ; 619-620: 1153-1162, 2018 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-29734594

RESUMEN

Polybrominated diphenyl ethers (PBDEs) are common pollutants released from electronic waste (e-waste) dismantling and recycling activities. Our city-wide survey of agricultural soils in Qingyuan (40 sampling sites), where e-waste recycling has been active, observed exceedance of PBDEs above background levels (average of 251.9ngg-1, 87 times the regional baseline concentration) together with elevated levels of metals/metalloids at the contamination hotspots, such as As (180.4mgkg-1), Cu (100.7mgkg-1), Zn (93.4mgkg-1), Pb (37.8mgkg-1), Cr (15.1mgkg-1), and Cd (0.3mgkg-1). Hence, a twenty-cycle batch sorption test on composite soil samples from the e-waste site was conducted to study the fate of BDE-28 (2,4,4'-tribromodiphenyl ether) and BDE-99 (2,2',4,4',5-pentabromodiphenyl ether) under the influence of co-existing trace elements (TEs) (Cu, Pb, Zn, and Cd, which exceeded Chinese Environmental Quality Standard for Soils), dissolved organic matter (extracted from local peat), and locally available commercial fertilizer. The results showed that the presence of TEs barely affected the sorption of BDEs, probably because the low concentration of BDEs in the environment resulted in nearly complete sorption onto the soil. In contrast, metals sorption onto soil was promoted by the presence of BDEs. The mobility of BDE-28 was higher than BDE-99 in water leaching tests, while the leaching concentration of BDE-99 was further reduced in simulated acid rain possibly due to protonation of π-accepting sites in soil organic matter. In the freshly spiked soil, BDEs of greater hydrophobicity and larger molecular size exhibited higher bioavailability (due to greater affinity to Tenax extraction), which was contrary to the field contaminated soil. Similarly, the co-occurrence of metals and fertilizer increased the bioavailability of newly sorbed BDE-99 more than BDE-28 in the soil. These results illustrate the need to holistically assess the fate and interactions of co-existing organic and inorganic pollutants in the agricultural soils.

18.
Environ Sci Technol ; 52(5): 2742-2750, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29425033

RESUMEN

The triplet excited state of natural organic matter (3NOM*) is an important reactive intermediate in sensitizing transformation of a wide range of environmentally relevant organic compounds, but the impact of trace metals on the fate and reactivity of 3NOM* is poorly understood. In this study, we investigate the effect of low concentrations of copper on 3NOM*-mediated oxidation (electron transfer) and energy transfer reactions. The oxidative efficiency of 3NOM* from Suwannee River NOM (SRNOM) and the widely used model triplet sensitizer 4-carboxybenzophenone were determined by measuring the photooxidation of 2,4,6-trimethylphenol (TMP). The pseudo-first-order photooxidation rate constants of TMP decreased markedly in the presence of trace amounts of Cu(II) (25-500 nM) with the decrease associated with the continuous reduction of the oxidation intermediates of TMP (i.e., TMP•(-H)) by the photochemically produced Cu(I). A kinetic model is developed that adequately describes the Cu inhibition effect in TMP photooxidation in irradiated SRNOM solutions. The 3NOM* energy transfer ability was assessed by measuring the isomerization of sorbic acid with the rate of this process markedly retarded in the presence of significantly higher (micromolar) concentrations of Cu(II) than previously used. This result is attributed to (i) decreased formation of high energy 3NOM* due to formation of Cu-NOM complexes and (ii) increased loss of 3NOM* as a result of quenching by Cu. Since 3NOM* is the precursor to singlet oxygen (1O2) formation, the steady-state concentrations of 1O2 also decreased in the presence of micromolar concentrations of Cu(II) with the quenching rate constant of 3NOM* by Cu calculated to be 1.08 × 1010 M-1 s-1.


Asunto(s)
Cobre , Ríos , Cinética , Compuestos Orgánicos , Oxidación-Reducción
19.
Environ Sci Technol ; 52(4): 1806-1816, 2018 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-29338220

RESUMEN

This study investigated the role of bromide ions in the degradation of nine pharmaceuticals and personal care products (PPCPs) during the UV/chlorine treatment of simulated drinking water containing 2.5 mgC L-1 natural organic matter (NOM). The kinetics of contributions from UV irradiation and from oxidation by free chlorine, free bromine, hydroxyl radical and reactive halogen species were evaluated. The observed loss rate constants of PPCPs in the presence of 10 µM bromide were 1.6-23 times of those observed in the absence of bromide (except for iopromide and ibuprofen). Bromide was shown to play multiple roles in PPCP degradation. It reacts rapidly with free chlorine to produce a trace amount of free bromine, which then contributes to up to 55% of the degradation of some PPCPs during 15 min of UV/chlorine treatment. Bromide was also shown to reduce the level of HO• and to change the reactive chlorine species to bromine-containing species, which resulted in decreases in ibuprofen degradation and enhancement in carbamazepine and caffeine degradation, respectively. Reactive halogen species contributed to between 37 and 96% of the degradation of the studied PPCPs except ibuprofen in the presence of 10 µM bromide ion. The effect of bromide is non-negligible during the UV/chlorine treatment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Bromuros , Cloro , Rayos Ultravioleta
20.
Water Res ; 116: 254-265, 2017 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-28343060

RESUMEN

Carbamazepine (CBZ) is one of the pharmaceuticals most frequently detected in the aqueous environment. This study investigated the transformation products when CBZ is degraded by chlorine under ultraviolet (UV) irradiation (the UV/chlorine process). Detailed pathways for the degradation of CBZ were elucidated using ultra-high performance liquid chromatography (UHPLC)-quadrupole time-of-flight mass spectrometry (QTOF-MS). CBZ is readily degraded by hydroxyl radicals (HO) and chlorine radicals (Cl) in the UV/chlorine process, and 24 transformation products were identified. The products indicate that the 10,11-double bond and aromatic ring in CBZ are the sites most susceptible to attack by HO and Cl. Subsequent reaction produces hydroxylated and chlorinated aromatic ring products. Four specific products were quantified and their evolution was related with the chlorine dose, pH, and natural organic matter concentration. Their yields showed an increase followed by a decreasing trend with prolonged reaction time. CBZ-10,11-epoxide (I), the main quantified transformation product from HO oxidation, was observed with a peak transformation yield of 3-32% depending on the conditions. The more toxic acridine (IV) was formed involving both HO and Cl with peak transformation yields of 0.4-1%. All four quantified products together amounted to a peak transformation yield of 34.5%. The potential toxicity of the transformation products was assayed by evaluating their inhibition of the bioluminescence of the bacterium Vibrio Fischeri. The inhibition increased at first and the decreased at longer reaction times, which was in parallel with the evolution of transformation products.


Asunto(s)
Carbamazepina/química , Cloro/química , Cinética , Contaminantes Químicos del Agua/química , Purificación del Agua
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...